If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=125
We move all terms to the left:
x^2+10x-(125)=0
a = 1; b = 10; c = -125;
Δ = b2-4ac
Δ = 102-4·1·(-125)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{6}}{2*1}=\frac{-10-10\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{6}}{2*1}=\frac{-10+10\sqrt{6}}{2} $
| x+42x+(x-5)=180 | | 10x−4=−4+10x | | 14+3y=12y-21 | | 5y-11=90 | | 10p+19=7+11p+1 | | 10(x+1)=2x-6 | | -x+6x-8=-8+5x | | 10+5x+4x=-62 | | -5h+4=-2h+16 | | 4x+2x+20=44 | | -323=19a | | 3x+3=35+x | | 7(8+4x)=119 | | -19m=57 | | 3x-2/4=-8 | | x+1+7=2x+8= | | 7√x−2+3=6 | | -3=31+c/6 | | 5x+4+36+90=180 | | 0.25x+40=0.45x+15 | | -10k+1=40+7k | | 5y-20=15 | | 180=45+b+50 | | 13x=4x=10 | | 4(2x−5)=−4 | | y+-16=-2 | | 8+p/7=3 | | 2(2x-2)=5x+3 | | 3x–8=13 | | -16=a/2 | | -13+7r=8r+1 | | 600=(38+32-2x)2x |